SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN

Academic Year 2019-2020

Program:	B E - Civil Engineering
Semester:	3
Course Code:	18 CV 32
Course Title:	Strength of Materials
Credit /L-T-P:	$4 / 4-0-0$
Total Contact Hours:	50
Course Plan Author:	SHIVASHANKAR R

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29 Hesaraghatta main road, Chimney hills, Chikkabanavara
Bangalore 560090. Ph 080-23721477
www.skit.org Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content. 3
3. Course Material. 4
4. Course Prerequisites 4
5. Content for Placement, Profession, HE and GATE 4
B. OBE PARAMETERS 5
6. Course Outcomes
7. Course Applications 5
8. Mapping And Justification. 6
9. Articulation Matrix 7
10. Curricular Gap and Content. 7
11. Content Beyond Syllabus 8
C. COURSE ASSESSMENT 8
12. Course Coverage 8
13. Continuous Internal Assessment (CIA) 8
D1. TEACHING PLAN - 1 9
Module - 1 9
Module - 2 10
E1. CIA EXAM - 1 11
a. Model Question Paper - 1 11
b. Assignment -1. 11
D2. TEACHING PLAN - 2 15
Module - 3 15
Module - 4 16
E2. CIA EXAM - 2 17
a. Model Question Paper - 2 17
b. Assignment - 2 17
D3. TEACHING PLAN - 3 22
Module - 5 22
E3. CIA EXAM - 3 22
a. Model Question Paper - 3 22
b. Assignment - 3 23
F. EXAM PREPARATION 26
14. University Model Question Paper 26
15. SEE Important Questions 28
G. Content to Course Outcomes 29
16. TLPA Parameters 29
17. Concepts and Outcomes 30
Note : Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page
Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B.E
Year / Semester:	$2019 /$ III	Academic Year:	$2019-20$
Course Title:	Strength of Materials	Course Code:	18 CV 32
Credit / L-T-P:	04	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:	SHIVASHANKAR R	Sign	Dt:
Checked By:	MOHAN KT	Sign	Dt:
CO Targets	CIA Target: 73\%	SEE Target:	40%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

$\begin{gathered} \text { Mod } \\ \text { ule } \end{gathered}$	Content	Teachi ng Hours	Identified Module Concepts	Blooms Learning Levels
1	Simple Stresses and Strain: Introduction, Definition and concept and of stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to self-weight. Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship	$\begin{gathered} 10 \\ (5,5) \end{gathered}$	Stress and Strain	Understand L2 Apply L3
2	Compound Stresses: Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses. Theory of failures: Max. Shear stress theory and Max. principal stress theory. Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external pressure; Lame's equation, radial and hoop stress distribution.	$\begin{gathered} 10 \\ (5,5) \end{gathered}$	2D Stress System Cylinders	Analyze L4
3	Shear Force and Bending Moment in Beams: Introduction to types of beams, supports and loadings. Definition of bending moment and shear force, Sign conventions, relationship between load intensity, bending moment and shear force. Shear force and bending moment diagrams for statically determinate beams subjected to points load, uniformly distributed loads, uniformly varying loads, couple and their combinations.	$\begin{gathered} 10 \\ (5,5) \end{gathered}$	Shear Force and Bending moment	Understand L2 Analyze L4
4	Bending and Shear Stresses in Beams: Introduction, pure bending theory, Assumptions, derivation of bending equation, modulus of rupture, section modulus, flexural rigidity. Expression for transverse shear stress in beams, Bending and shear stress distribution diagrams for circular, rectangular, 'I', and ' T ' sections. Shear centre (only concept). Torsion in Circular Shaft: Introduction, pure torsion, Assumptions, derivation of torsion equation for circular shafts, torsional rigidity and polar modulus Power transmitted by a shaft.	$\begin{gathered} 10 \\ (5,5) \end{gathered}$	Bending Stress And Torsion	Analyze L4
5	Deflection of Beams: Definition of slope, Deflection and curvature, Sign conventions, Derivation of moment curvature equation. Double integration method and Macaulay's	$\begin{gathered} 10 \\ (5,5) \end{gathered}$	Deflection of beam Columns and	Understand L2 Analyze L4

Columns and Struts: Introduction, short and long columns. Euler's theory; Assumptions, Derivation for Euler's Buckling load for different end conditions, Limitations of Euler's theory. Rankine-Gordon's formula for columns.

Total
50

	Strut	
$50-$	-	

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	B.S. Basavarajaiah, P.Mahadevappa "Strength of Materials" in SI Units, University Press (India) Pvt. Ltd., 3 rd Edition, 2010.	1, 2, 3, 4	In Dept
$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	R K Bansal, "A Textbook of Strength of Materials", 4th Edition, Laxmi Publications, 2010	1,2, 3, 4	In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	D.H. Young, S.P. Timoshenko "Elements of Strength of Materials" East West Press Pvt. Ltd., 5 th Edition (Reprint 2014)		In Lib
1, 2	Ferdinand P. Beer, E. Russell Johnston and Jr.John T. DeWolf "Mechanics of Materials", Tata McGraw-Hill, Third Edition, SI Units.		Not Available
3, 4, 5	S.S. Rattan " Strength of Materials" McGraw Hill Education (India) Pvt. Ltd., 2nd Edition (Sixth reprint 2013)		In lib
C	Concept Videos or Simulation for Understanding	-	-
C1	https://youtu.be/GkFgysZC4Vc		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
?			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
3	18 CIV14	Elements ofBeams, Loads, Supports, Centroid Civil and Moment of Inertia Engineering and Mechanics	1	-	Understa nd L2	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

COURSE PLAN - CAY 2019-20

| Mod
 ules | Topic / Description | Remarks | Blooms
 Level |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Knowledge of Shear force and bending
 moment diagrams | Higher
 Study | Understa
 nd L2 |

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	Instr Method	$\begin{aligned} & \text { Assessme } \\ & \text { nt } \\ & \text { Method } \end{aligned}$	Blooms' Level
1	18cv32.1	understand one dimensional stresses and strains	5	Stress and Strain	Lecture	CIA and Assignme nt	Understand L2
1	18cv32.2	apply simple stresses and strains on engineering materials	5	Stress and Strain	Lecture/ Tutorial	CIA and Assignme nt	Apply L3
2	18cv32.3	analyse 2D compound stress system and plotting principal stresses and planes by using mohr's circle	5	2D Stress System	Lecture	CIA and Assignme nt	Analyze L4
2	18cv32.4	analyse the thin and thick cylinders subjected to internal and external pressures and draw stress distribution patterns	5	Cylinders	Lecture	CIA and Assignme nt	Analyze L4
3	18cv32.5	plot shear force and bending moment diagrams for statically determinate beams	5	Shear Force and Bending moment	Lecture	CIA and Assignme nt	Analyze L4
3	18cv32.6	understand the behaviour of statically determinate beams under external loads	5	Shear Force and Bending moment	Lecture/ Tutorial	CIA and Assignme nt	Understand L2
4	18cv32.7	plot combined shear and bending stresses distribution for circular, rectangular and T geometric sections	5	Bending Stress	Lecture/ Tutorial	CIA and Assignme nt	Analyze L4
4	18 cv 32.8	analyse the circular shafts under torsion and its behaviour in combined bending and torsion criteria	5	Torsion in shaft	Lecture/ Tutorial	CIA and Assignme nt	Analyze L4
5	18cv32.9	Deflection and curvature of beam	5	Deflection of beam	Lecture	CIA and Assignme ntAnalyze L4	Analyze L4
5	18cv32.10	analyse the behaviour of columns and struts under buckling load and end conditions	5	Buckling of columns	Lecture	CIA and Assignme nt	Analyze L4
-	-	Total	50	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Engineering materials	CO 1	L 2
1	Helpful to suggest suitable material in the field of construction and manufacturing	CO 2	L 3

2	Elasticity and Plasticity	CO 3	L 4
2	Oil and gas industries	CO 4	L 4
3	Designing and construction fields	CO 5	L 4
3	Structural behaviour under the application of loads/Structural analysis	CO 6	L 2
4	Designing and construction sites of engineering materials	CO 7	L 4
4	Infrastructure development	CO 8	L 4
5	Engineering constructions and machinaries	CO 9	L 4
5	Research methodology	CO 10	L 2

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Mod ules	Mapping		Mapping Level	Justification for each CO-PO pair	$\begin{array}{\|c\|} \hline \text { Lev } \\ \text { el } \end{array}$
-	CO	PO	-	'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment’	-
1	CO1	PO1	1	Knowledge of engineering fundamentals is required to understand one dimensional stress and strain.	L2
1	CO 2	PO1	1	Knowledge of engineering fundamentals is required to understand simple stress and strain on materials.	L3
1	CO 2	PO 2	1	Problem analysis of simple stress and strain on material is required	L3
2	CO_{3}	PO1	1	Knowledge of engineering fundamentals is required to understand 2D compound stress system	L4
2	CO 3	PO 2	1	To analyse problem on 2D compound stress system and plotting principal stresses and planes by using mohr's circle	L4
2	CO 4	PO1	1	Knowledge of engineering fundamentals is required to understand thick and thin cylinders.	L4
2	CO 4	PO 2	1	To analyse the thin and thick cylinders subjected to internal and external pressures	L4
2	CO 4	PO 3	1	Design thin and thick cylinders subjected to internal and external pressures	L4
3	CO 5	PO1	1	Knowledge of engineering fundamentals is required to understand shear force and bending moment.	L4
3	CO 5	PO 2	1	To plot shear force and bending moment diagrams for statically determinate beams	L4
3	CO6	PO1	1	Knowledge of engineering fundamentals is required to understand behaviour of statically determinate beams under external loads	L2
3	CO6	PO 2	1	Should analyze the behaviour of statically determinate beams under external loads.	L2
4	CO 7	PO1	1	Knowledge of engineering fundamentals is required to understand combined shear and bending stresses	L4
4	CO7	PO 2	1	To plot combined shear and bending stresses distribution for circular, rectangular and T geometric sections	L4
4	CO7	PO3	1	Design circular, rectangular and T geometric sections.	L4
4	C08	PO1	1	Knowledge of engineering fundamentals is required to understand buckling of columns.	L4
4	C08	PO 2	1	To analyse the behaviour of columns and struts under buckling load and end conditions	L4
4	C08	PO 3	1	Design circular and rectangular column for various end condition.	L4
5	COg	PO1	1	Knowledge of engineering fundamentals is required to understand torsion in circular shaft.	L4
5	COg	PO 2	1	To analyse the circular shafts under torsion.	L4
5	COg	PO_{3}	1	To design the circular shafts.	L4
5	CO10	PO1	1	Should have knowledge to understand the theory of failures.	L2
5	CO10	PO 2	1	To analyze the failure theories of circular shafts under torsion phenomenon	L2

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to . .				PO		PO		$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	1 PO	PO	PO	PS	PS	$\begin{array}{\|l\|} \mathrm{PS} \\ \mathrm{O}_{3} \end{array}$	$\begin{array}{c\|c} \hline \text { Lev } \\ 3 & \mathrm{el} \end{array}$
1	18cv32.1	understand one dimensional stresses and strains	1	-	-	-	-	-	-	-	-	-	-	-				L3
1	18cv32.2	apply simple stresses and strains on engineering materials	2	2	-	-	-	-	-	-	-	-	-	-				L4
2	18cv32.3	analyse 2D compound stress system and plotting principal stresses and planes by using mohr's circle	2	2	-	-	-	-	-	-	-	-	-	-				L4
2	18cv32.4	analyse the thin and thick cylinders subjected to internal and external pressures and draw stress distribution patterns	2	2	2	-	-	-	-	-	-	-	-	-				L4
3	18cv32.5	plot shear force and bending moment diagrams for statically determinate beams	2	2	-	-	-	-	-	-	-	-	-	-				L4
3	18cv32.6	understand the behaviour of statically determinate beams under external loads	1	1	-	-	-	-	-	-	-	-	-	-				L4
4	18cv32.7	plot combined shear and bending stresses distribution for circular, rectangular and T geometric sections	2	2	2	-	-	-	-	-	-	-	-	-				L4
4	18cv32.8	analyse the circular shafts under torsion and its behaviour in combined bending and torsion criteria		2	2	-	-	-	-	-	-	-	-	-				L4
5	18cv32.9	Deflection and curvature of beam		2		-	-	-	-	-	-	-	-	-				L4
5	18cv32.10	analyse the behaviour ofcolumns buckling and struts under conditions		1	-	-	-	-	-	-	-	-	-	-				L4
-	18cv32PC	Average attainment (1, 2, or 3)	1.7	1.8	2													-
-	PO, PSO	1.Engineering Knowledge; 2.Proble 4. Conduct Investigations of Complex Society; 7.Environment and Sustan 10.Communication; 11.Project S1.Software Engineering; S2.Data Bas	lem lex usta Man Bas	$\begin{aligned} & \text { Ar } \\ & \text { Proh } \\ & \text { aina } \\ & \text { hage } \\ & \text { e Mo } \end{aligned}$	naly bler abilit eme ana		$\begin{array}{r} 3 . \\ 5 . \mathrm{M} \\ 8 . E \\ \text { ar } \\ \text { mer } \end{array}$	Des Mode Ethic nd nt: S	ign	Too $9.1 n$ an eb			opm e; 6 ual 2.Life	.The and fe-lo	png			ions; and work; ning;

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1						
1						
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Simple Stresses and Strains	10	2	-	-	1	1	2	CO1, CO2	L3
2	Compound Stresses, Thin and Thick Cylinders	10	2	-	-	1	1	2	CO3, CO4	L4
3	Shear Force and Bending Moment in beams	10	-	2	-	1	1	2	CO5, CO6	L2, L4
4	Bending and Shear Stresses in Beams Torsion in Circular Shaft	10	-	2	-	1	1	2	CO7, C08	L2, L4
5	Deflection of Beams, Columns and Struts	10	-	-	4	1	1	2	CO9, CO10	L2, L4
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam - 1	30	CO1, CO2, CO3, CO4	L2, L3, L2, L4
3.4	CIA Exam - 2	30	CO5, C06, CO7, C08	L2, L4, L2, L4
5	CIA Exam - 3	30	CO9, CO10	L2, L4
1,2	Assignment - 1	10	CO1, CO2, CO3, CO4	L2, L3, L2, L4
3.4	Assignment-2	10	CO5, CO6, CO7, CO8	L2, L4, L2, L4
5	Assignment-3	10	CO9, CO10	L2, L4
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Simple Stresses and Strains	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	understand one dimensional stresses and strains	CO1	L2
2	apply simple stresses and strains on engineering materials	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Introduction.	C01	L2
2	Definition and concept and of stress and strain.		
3	Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety.		
4	Elongation of tapering bars of circular and rectangular cross sections.		
5	Elongation due to self weight.		
6	Saint Venant's principle, Compound bars.	CO 2	L3
7	Temperature stresses.		
8	Compound section subjected to temperature stresses.		
9	state of simple shear.		
10	Elastic constants and their relationship.		
c	Application Areas	CO	Level
1	Engineering material	CO1	L2
2	Helpful to suggest suitable material in the field of construction and manufacturing	CO2	L3
d	Review Questions	-	-
1	A 25 mm square-cross-section bar of length 300 mm carries an axial compressive load of 50 kN . Determine the stress set up in the bar and its change of length when the load is applied. For the bar material $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}$ 2.	CO2	L3
2	Define the terms shear stress and shear strain, illustrating your answer by means of a simple sketch. Two circular bars, one of brass and the other of steel, are to be loaded by a shear load of 30 kN . Determine the necessary diameter of the bars (a) in single shear, (b) in double shear, if the shear stress in the two materials must not exceed $50 \mathrm{MN} / \mathrm{m} 2$ and $100 \mathrm{MN} /$ Sq.mm respectively.	CO 2	L3
3	A steel tube, 25 mm outside diameter and 12 mm inside diameter, carries an axial tensile load of 40 kN . What will be the stress in the bar? What further increase in load is possible if the stress in the bar is limited to 225 MN/Sq.mm	CO2	L3
4	A test piece is cut from a brass bar and subjected to a tensile test. With a load of 6.4 kN the test piece, of diameter 11.28 mm , extends by 0.04 mm over a gauge length of 50 mm . Determine: (i) the stress, (ii) the strain, (iii) the modulus of elasticity.	CO 2	L3
5	A bar ABCD consists of three sections: AB is 25 mm square and 50 mm long, $B C$ is of 20 mm diameter and 40 mm long and $C D$ is of 12 mm diameter and 50 mm long. Determine the stress set up in each section of the bar when it is subjected to an axial tensile load of 20 kN . What will be the total extension of the bar under this load? For the bar material, $\mathrm{E}=210 \mathrm{GN} / \mathrm{m} 2$.	CO2	L3
e	Experiences	-	-
1			
2			
3			

COURSE PLAN - CAY 2019-20

4			
5			

Module - 2

Title:	Compound Stresses, Thin and Thick Cylinders	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to analyse 2D compound stress system and plotting principal stresses and planes by using mohr's circle	CO_{3}	L4
2	Student should be able to analyse the thin and thick cylinders subjected to internal and external pressures and draw stress distribution patterns	CO 4	L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
11	Introduction, state of stress at a point.	CO_{3}	L4
12	General two dimensional stress system.		
13	Principal stresses and principal planes.		
14	Mohr's circle of stresses.		
15	Introduction,	CO 4	L4
16	Thin cylinders subjected to internal pressure; Hoop stresses.		
17	Longitudinal stress and change in volume.		
18	Thick cylinders subjected to both internal and external pressure.		
19	Lame's equation.		
20	Radial and hoop stress distribution.		
c	Application Areas	CO	Level
1	Elasticity and Plasticity	CO_{3}	L4
2	Oil and gas industries	CO 4	L4
d	Review Questions	-	-
1	Define : i) Principal stresses ii) Principal planes.	CO_{3}	L4
2	Show that principal planes and maximum shearing planes are inclined at 45° with each.	CO_{3}	L4
3	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	CO_{3}	L4
4	Derive expressions for principal stresses and their planes for two dimensional stress systems.	CO_{3}	L4
5	Define: i) Principal stresses, ii) Critical planes, iii) Principal planes.	CO_{3}	L4
e	Experiences	-	-
1			
2			
3			
4			
5			

E1. CIA EXAM - 1
a. Model Question Paper - 1

Crs Code:		: 18CV32	Sem:	III	Marks:		Time: 75	75 minutes			
Cou		Strength of Materials									
	-	Note: Answer any 3 questions, each carry equal marks							Marks	CO	ev
1	a	Define i) stress ii) strain iii) modulus of elasticity.							03	CO1	L3
	b	Determine the value and total deformation of stepped bar. Take $\mathrm{E}=2.1 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$.							12	CO1	L4
		OR									
2	a	Derive an expression for the deformation of tapering circular bar subjected to axial force.							08	CO2	L4
	b	A brass tube 100 mm diameter and 10 mm thick is enclosed in a steel tube 120 mm diameter and 10 mm thick. Both the tubes are rigidly fixed to each other and carries an axial load of 3000 kN . The tubes are of same length 3 m . Determine the load carried and stress induced in each material. Also determine the amount by which it shortens. Es $=200 \mathrm{kN} /$ $\mathrm{mm}^{2} \& \mathrm{E}_{\mathrm{B}}=100 \mathrm{kN} / \mathrm{mm}^{2}$.							07	CO2	L3
3	a	Name and Define Elastic constants.							04	CO 3	L2
	b	A steel tie rod 40 mm in diameter and 2 m long is subjected to a pull of 80 kN . To what length the bar should be bored centrally so that the total extension will increase by 20% under the same pull, the bore being 20 mm diameter. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$							11	CO3	L4
		OR									
4	a	Derive relationship b/w Young's Modulus and rigidity Modulus A compound bar made of steel plate 60 mm wide and 10 mm thick to which the copper plate 60 mm wide and 5 mm thick are rigidly connected to each other. The length of the bar is 0.7 m .If the temperature is raised by $80^{\circ} \mathrm{C}$. Determine the stress in each metal and the change in length. Take: Es $=200 \mathrm{GPa}$ and $\alpha_{\mathrm{s}}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ $\mathrm{Ecu}=100 \mathrm{GPa}$ and $\alpha_{\mathrm{cu}}=17 \times 10^{-6} /{ }^{\circ} \mathrm{C}$							08	CO4	L3
	b								07	CO 4	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18 CV 32	Sem:	III	Marks:	$5 / 10$	Time:	$90-120$ minutes
Course:	Strength of Materials						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
2		Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO 2	L3
3		A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
4		Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
5		A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO2	L3
6		Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
7		Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
8		Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a	5	CO_{3}	L4

COURSE PLAN - CAY 2019-20

	point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.			
9	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO 3	L4
10	Define: i) Principal stresses, ii) Critical planes, iii) Principal planes.	5	CO_{3}	L4
11	Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
12	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO2	L3
13	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO2	L3
14	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
15	A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO 2	L3
16	Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
17	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
18	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	5	CO_{3}	L4
19	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO3	L4
20	Define: i) Principal stresses, ii) Critical planes, iii) Principal planes	5	CO_{3}	L4
21	Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
22	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO2	L3
23	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
24	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
25	A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO2	L3
26	Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
27	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
28	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	5	CO_{3}	L4
29	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO_{3}	L4
39	Define: i) Principal stresses,	5	CO_{3}	L4

COURSE PLAN - CAY 2019-20

	iii) Critical planes, iii) Principal planes.			
31	Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
32	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO 2	L3
33	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
34	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
35	A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO 2	L3
36	Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
37	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
38	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	5	CO_{3}	L4
39	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO_{3}	L4
40	Define: i) Principal stresses ii) Critical planes iii) Principal planes.	5	CO_{3}	L4
41	Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
42	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO 2	L3
43	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
44	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
45	A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO 2	L3
46	Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
47	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
48	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	5	CO 3	L4
49	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO3	L4
50	Define: i) Principal stresses, ii) Critical planes iii) Principal planes	5	CO_{3}	L4
51	Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
52	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO 2	L3

COURSE PLAN - CAY 2019-20

53	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
54	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
55	A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO 2	L3
56	Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
57	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
58	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	5	CO_{3}	L4
59	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO_{3}	L4
60	Define: i) Principal stresses, ii) Critical planes, iii) Principal planes	5	CO_{3}	L4
61	Define i) stress ii) strain iii) modulus of elasticity.	5	CO1	L2
62	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO 2	L3
63	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
64	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
65	A signal is being worked by a steel wire 750 m long and 6 mm in diameter. Find the movement which must be given to the signal box end of wire at a pull of 1.6 kN , if the movement at the signal end is to be 250 mm . Assume ' E '	5	CO 2	L3
66	Define : i) Principal stresses ii) Principal planes.	5	CO_{3}	L4
67	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO_{3}	L4
68	Determine the magnitude and direction of resultant stresses on a plane inclined at an angle of 60° to major principal stress plane, when the bar is subjected to principal stresses at a point 200 MPa tensile and 100 MPa compressive. Also determine the resultant stress and its obliquity.	5	CO_{3}	L4
69	Derive expressions for principal stresses and their planes for two dimensional stress systems.	5	CO_{3}	L4
70	Define: i) Principal stresses ii) Critical planes, iii) Principal planes.	5	CO_{3}	L4
71	Define i) stress ii) strain iii) modulus of elasticity.	5	CO_{1}	L2
72	Derive an expression for the deformation to the tapering circular cross - sectional bar subjected to an axial force P. . Use standard notations.	5	CO2	L3
73	A rod of 12 mm diameter and 1 m long subjected to a tensile load "P" such way that elongation should not be more than 0.4 mm . Find the value of ' W . Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.	5	CO 2	L3
74	Briefly explain the behaviour of ductile material under gradually increasing tensile load	5	CO1	L2
75	A signal is being worked by a steel wire 750 m long and 6 mm	5	CO 2	L3

COURSE PLAN - CAY 2019-20

	in diameter. Find the movement which must be given to the signal box end of wire at a pull of I.6 kN, if the movement at the signal end is to be 250 mm . Assume ' E '			
76	Define : i) Principal stresses ii) Principal planes.	5	$\mathrm{CO3}$	L 4
77	Show that principal planes and maximum shearing planes are inclined at 45° with each.	5	CO 3	$\mathrm{L4}$

D2. TEACHING PLAN - 2

Module - 3

Title:	Shear Force and Bending Moment in beams	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Student should be able to plot shear force and bending moment diagrams for statically determinate beams	CO 5	L4
2	Student should be able to understand the behaviour of statically determinate beams under external loads	C06	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction to types of beams.	C6	L2
2	Supports and loadings.		
3	Definition of bending moment and shear force, Sign conventions.		
4	Relationship between load intensity.		
5	Bending moment and shear force.	C5	L4
6	Shear force and bending moment diagrams for statically determinate beams subjected to points load.		
7	Numericals.		
8	Shear force and bending moment diagrams for statically determinate beams subjected to uniformly distributed loads.		
9	Shear force and bending moment diagrams for statically determinate beams subjected to uniformly varying loads.		
10	Shear force and bending moment diagrams for statically determinate beams subjected to couple and their combinations.		
c	Application Areas	CO	Level
1	Designing and construction fields	CO 5	L4
2	Structural behaviour under the application of loads/Structural analysis	C06	L2
d	Review Questions	-	-
1	Derive the relationship between BM, SF and intensity of udl.	C06	L2
2	Define i) Bending moment ii) Point of contraflexure.	C06	L2
3	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between 'A' and 'C' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.	CO5	L4
4	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	C06	L2
5	Draw SFD and BMD for a cantilever beam of span length 'l' carrying a point load w at its free end.	CO 5	L4
e	Experiences	-	-
1			
2			

COURSE PLAN - CAY 2019-20

3			
4			
5			

Module - 4

Title:	Bending and Shear Stresses in Beams Torsion in Circular Shaft	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	plot combined shear and bending stresses distribution for circular, rectangular and T geometric sections	CO7	L4
2	analyse the behaviour of columns and struts under buckling load and end conditions	C08	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction, pure bending theory.	CO7	L2
2	Assumptions, derivation of bending equation.	CO7	L2
3	Modulus of rupture, section modulus, flexural rigidity..	CO7	L4
4	Expression for transverse shear stress in beams,	CO7	L4
5	Bending and shear stress distribution diagrams for circular, rectangular, 'I', and 'T' sections. Shear centre (only concept).	CO7	L4
6	Introduction, pure torsion.	C08	L2
7	Assumptions.	C08	L4
8	Derivation of torsion equation for circular shafts.	C08	L4
9	Torsional rigidity and polar modulus Power transmitted by a shaft.	C08	L4
10	Combined bending and torsion.	C08	L4
c	Application Areas	CO	Level
1	Designing and construction sites of engineering materials	C08	L4
2	Infrastructure development	CO7	L4
d	Review Questions	-	-
1	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	CO7	L4
2	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	$\mathrm{CO7}$	L4
3	Derive the equation of theory of simple bending with usual notations.	CO7	L4
4	Derive an expression for Euler's crippling load for a column with both ends fixed.	C08	L4
5	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant a $=(1 / 7500)$ and $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L/K, the Euler's formula cease to apply for this column?	C08	L4
e	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM - 2
a. Model Question Paper - 2

Crs C		17CV32	Sem:	III	Marks:	30	Time: 75	75 minutes		
Cour		Strength of Materials								
-	-	Note: Answer any 2 questions, each carry equal marks						Marks	CO	Leve
1	a	Derive the relationship between intensity of load, shear force and bending moment.						10	CO3	L2
	b	Draw the shear force and bending moment diagrams for the cantilever.						05	CO_{3}	L4
		OR								
2	a	Define i) shear force ii) Bending moment iii) Point of contraflexure						03	CO_{3}	L2
	b	Draw the shear force and bending moment diagrams for the beams.						12	CO_{3}	L4
		For the Cantilever beam, obtain SFD and BMD.								
3	a							10	CO 4	L4
	b	Draw SFD and BMD for the beam loaded. Indicate the values at various points and locate point of contraflexure, if any..						05	CO4	L4
		OR								
4	a	A simply supported beam $A B$ of span ' L ' is subjected to an eccentric point load 'W' a distance of 'a' from left support and 'b' from right support. Develop the general expressions for shear force and bending moment. Draw BMD and SFD.						10	CO4	L2

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	17cv32	Sem:	III	Marks:	5	Time:	90-120 minutes
Course:	Strength of Materials				Module : 3, 4		

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
2		Define i) Bending moment ii) Point of contraflexure.	5	CO6	L2
3		A beam ABCD, 8m long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and ' C ' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end ' W . Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
4		Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
5		Draw SFD and BMD for a cantilever beam of span length 'l' carrying a point load w at its free end.	5	CO 5	L4
6		Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO 7	L4
7		Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	CO 7	L4
8		Derive the equation of theory of simple bending with usual notations.	5	CO 7	L4
9		Derive an expression for Euler's crippling load for a column with both ends fixed.	5	C08	L4
10		Compare the crippling loads given by Euler's and Rankine's	5	CO8	L4

COURSE PLAN - CAY 2019-20

	formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $\mathrm{a}=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L/K, the Euler's formula cease to apply for this column?			
11	Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
12	Define i) Bending moment ii) Point of contraflexure.	5	CO6	L2
13	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and ' C ' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
14	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
15	Draw SFD and BMD for a cantilever beam of span length ' l ' carrying a point load w at its free end.	5	CO 5	L4
16	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
17	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	CO7	L4
18	Derive the equation of theory of simple bending with usual notations.	5	$\mathrm{CO7}$	L4
19	Derive an expression for Euler's crippling load for a column with both ends fixed.	5	C08	L4
20	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $\mathrm{a}=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L/K, the Euler's formula cease to apply for this column?	5	C08	L4
21	Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
22	Define i) Bending moment ii) Point of contraflexure.	5	CO6	L2
23	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and 'C' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
24	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	C06	L2
25	Draw SFD and BMD for a cantilever beam of span length ' C carrying a point load w at its free end.	5	CO 5	L4
26	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
27	Draw the shear stress diagram for a rectangular beam section	5	$\mathrm{CO7}$	L4

COURSE PLAN - CAY 2019-20

	and show that maximum shear stress is 1.5 times average shear stress.			
28	Derive the equation of theory of simple bending with usual notations.	5	$\mathrm{CO7}$	L4
29	Derive an expression for Euler's crippling load for a column with both ends fixed.	5	C08	L4
39	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $a=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L / K, the Euler's formula cease to apply for this column?	5	CO8	L4
31	Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
32	Define i) Bending moment ii) Point of contraflexure.	5	C06	L2
33	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from 'A'. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and 'C' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
34	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
35	Draw SFD and BMD for a cantilever beam of span length 'l' carrying a point load w at its free end.	5	CO 5	L4
36	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
37	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	$\mathrm{CO7}$	L4
38	Derive the equation of theory of simple bending with usual notations.	5	CO7	L4
39	Derive an expression for Euler's crippling load for a column with both ends fixed.	5	CO8	L4
40	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $a=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L / K, the Euler's formula cease to apply for this column?	5	CO8	L4
41	Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
42	Define i) Bending moment ii) Point of contraflexure	5	CO6	L2
43	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from 'A'. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between 'A' and 'C' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
44	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
45	Draw SFD and BMD for a cantilever beam of span length 'l' carrying a point load w at its free end.	5	CO 5	L4

COURSE PLAN - CAY 2019-20

46	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
47	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	CO7	L4
48	Derive the equation of theory of simple bending with usual notations.	5	CO7	L4
49	Derive an expression for Euler's crippling load for a column with both ends fixed.	5	C08	L4
50	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $a=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L / K, the Euler's formula cease to apply for this column?	5	C08	L4
51	Derive the relationship between BM, SF and intensity of udl.	5	C06	L2
52	Define i) Bending moment ii) Point of contraflexure.	5	C06	L2
53	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and ' C ' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
54	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
55	Draw SFD and BMD for a cantilever beam of span length ' l ' carrying a point load w at its free end.	5	CO 5	L4
56	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
57	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	CO7	L4
58	Derive the equation of theory of simple bending with usual notations.	5	CO7	L4
59	Derive an expression for Euler's crippling load for a column with both ends fixed.	5	C08	L4
60	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $\mathrm{a}=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L/K, the Euler's formula cease to apply for this column?	5	C08	L4
61	Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
62	Define i) Bending moment ii) Point of contraflexure.	5	CO6	L2
63	A beam ABCD, 8 m long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and ' C ' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the		CO 5	L4

COURSE PLAN - CAY 2019-20

	point of contra-flexure if any.			
64	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
65	Draw SFD and BMD for a cantilever beam of span length ' l ' carrying a point load w at its free end.	5	CO 5	L4
66	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
67	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	CO7	L4
68	Derive the equation of theory of simple bending with usual notations.	5	CO7	L4
69	Derive an expression for Euler's crippling load for a column with both ends fixed.	5	C08	L4
70	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $\mathrm{a}=(1 / 7500)$ and $E=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L/K, the Euler's formula cease to apply for this column?	5	CO8	L4
71	Derive the relationship between BM, SF and intensity of udl.	5	CO6	L2
72	Define i) Bending moment ii) Point of contraflexure.	5	CO6	L2
73	A beam $A B C D, 8 m$ long has supports at ' A ' and at ' C ' which is 6 m from ' A '. The beam carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ between ' A ' and 'C' at point B a 30 kN concentrated load acts 2 m from the support A and a point load of 15 kN acts at the free end 'W. Draw the SFD and BMD giving salient values. Also locate the point of contra-flexure if any.		CO 5	L4
74	Define: i) Hogging bending moment ii) Sagging bending moment iii) Point of contraflexure.	5	CO6	L2
75	Draw SFD and BMD for a cantilever beam of span length ' l ' carrying a point load wat its free end.	5	CO 5	L4
76	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	5	CO7	L4
77	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.	5	CO7	L4

D3. TEACHING PLAN - 3

Module - 5

Title:	Deflection of Beams, Columns and Struts	Appr Time:	10Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Deflection and curvature of beam	CO 9	L4
2	analyse the behaviour of columns and struts under buckling load and end conditions	CO10	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Definition of slope, Deflection and curvature, Sign conventions,	CO 9	L2
2	Derivation of momentcurvature equation. Double integration method and Macaulay's method:	CO9	L4
3	Problems	COg	L4
4	Slope and deflection for standard loading cases and for determinate prismatic beams subjected to point loads, UDL, UVL and couple.	CO9	L4
5	Problems	CO9	L4
6	Introduction.	CO10	L2
7	Short and long columns. Euler's theory; Assumptions.	CO10	L2
8	Derivation for Euler's Buckling load for different end conditions.	CO10	L4
9	Limitations of Euler's theory.	CO10	L4
10	Rankine-Gordon's formula for columns.	CO10	L4
c	Application Areas	CO	Level
1	Engineering constructions and machinaries	CO 9	L4
2	Research methodology	CO10	L2
d	Review Questions	-	-
1	Prove the torsional formula, with usual notations.	CO10	L2
2	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	CO9	L4
3	State the assumptions made in the theory of Pure Torsion.	CO10	L2
4	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	CO9	L4
5	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	CO9	L4
e	Experiences	-	-
1			
2			
3			
4			
5			

E3. CIA EXAM - 3

a. Model Question Paper - 3

COURSE PLAN - CAY 2019-20

		OR			
2	a	State assumptions made in simple bending.	05	COg	L2
	b	A beam simply supported at ends and having cross section (Assumed). is loaded with a udl over a span of 8 m . The allowable bending stress in tension is $30 \mathrm{~N} / \mathrm{mm}^{2}$ and that in compression is $45 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the maximum value of udl, the beam can carry.	10	COg	L4
3	a	List the assumptions made in Euler's theory of long coloumns	05	CO10	L2
	b	A coloumn 6 m long has both of its ends fixed and has a timber section of $150 \mathrm{~mm} \times 200 \mathrm{~mm}$. Determine the crippling load on the coloumn. Take $\mathrm{E}=17.5 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$.	07	CO10	L4
	C	Differentiate between short and long coloumns	03	CO10	L2
		OR			
4	a	Using Euler's theory, derive an equation for the crippling load of a coloumn pointed or pinned at both ends.	08	CO10	L2
	b	Find the Euler's critical load for a hollow cylindrical cast iron coloumn 150 mm external diameter, 20 mm wall thickness if it is 6 m long with hinges at both ends. Assume Young's modulus of cast iron as $80 \mathrm{KN} / \mathrm{mm}^{2}$.Compare this load with given by Rankine's formula. using Rankine's constant $a=1 / 1600$ and $f_{c}=567 \mathrm{~N} / \mathrm{mm}^{2}$.	07	CO10	L4

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18cv32	Sem:	III	Marks:	5	Time:	$90-120$ minutes
Course:	Strength of Materials		Module:5				

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Prove the torsional formula, with usual notations.	5	CO10	L2
2		A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm. Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
3		State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
4		Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
5		A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
6		Prove the torsional formula, with usual notations.	5	CO10	L2
7		A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm. Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
8		State the assumptions made in the theory of Pure Torsion.	5	CO 10	L2
9		Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
10		A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
11		Prove the torsional formula, with usual notations.	5	CO 10	L2
12		A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm. Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4

COURSE PLAN - CAY 2019-20

13	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
14	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
15	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
16	Prove the torsional formula, with usual notations.	5	CO10	L2
17	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
18	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
19	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
20	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
21	Prove the torsional formula, with usual notations.	5	CO10	L2
22	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm. Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
23	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
24	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
25	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
26	Prove the torsional formula, with usual notations.	5	CO 10	L2
27	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
28	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
29	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
39	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
31	Prove the torsional formula, with usual notations.	5	CO10	L2
32	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
33	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
34	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
35	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2

COURSE PLAN - CAY 2019-20

36	Prove the torsional formula, with usual notations.	5	CO10	L2
37	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
38	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
39	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
40	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
41	Prove the torsional formula, with usual notations.	5	CO10	L2
42	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
43	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
44	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
45	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
46	Prove the torsional formula, with usual notations.	5	CO10	L2
47	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
48	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
49	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
50	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
51	Prove the torsional formula, with usual notations.	5	CO10	L2
52	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
53	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
54	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
55	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
56	Prove the torsional formula, with usual notations.	5	CO10	L2
57	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
58	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
59	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2

COURSE PLAN - CAY 2019-20

60	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO9	L2
61	Prove the torsional formula, with usual notations.	5	CO10	L2
62	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO 9	L4
63	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
64	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
65	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO 9	L2
66	Prove the torsional formula, with usual notations.	5	CO10	L2
67	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm. Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO9	L4
68	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
69	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
70	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO 9	L2
71	Prove the torsional formula, with usual notations.	5	CO10	L2
72	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO 9	L4
73	State the assumptions made in the theory of Pure Torsion.	5	CO10	L2
74	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.	5	CO10	L2
75	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm . Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.	5	CO 9	L2
76	Prove the torsional formula, with usual notations.	5	CO 10	L2
77	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm . Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .	5	CO 9	L4

F. EXAM PREPARATION

1. University Model Question Paper

Course: Crs Code:		Strength of Materials					Month / Year		May /July 2018 180 minutes	
		18CV32	Sem:	III	Marks:	100	Time:			
-	Note	Answer all FIVE full questions. All questions carry equal marks.						Marks	CO	Level
1	a	For a bar of uniform section derive an expression for elongation due to self weight.						$\begin{gathered} 16 / \\ 20 \end{gathered}$	CO1	
		Evaluate the deformation of the bar, given, $\mathrm{El}=\mathrm{E} 2=\mathrm{E} 3=200 \mathrm{GPa}$.							C01	

COURSE PLAN - CAY 2019-20

COURSE PLAN - CAY 2019-20

| b | Determine the diameter of the solid shaft transmitting 120 kW at 120 rpm
 if the permissible shear stress is $80 \mathrm{~N} / \mathrm{mm2} 2 . W$ hat would be the diameter
 of a hollow shaft of same length having external diameter twice the
 internal diameter to transmit same power at same rate of revolution. What
 is the percentage saving in weight by changing over to hollow shaft? | CO10 | |
| :---: | :---: | :--- | :--- | :--- |

2. SEE Important Questions

4	1	Compare the flexural strength of the following three beams i) I - section $320 \mathrm{~mm} \times 160 \mathrm{~mm}$ with 20 mm thick flange and 13 mm thick web ii) Rectangular section having depth twice the width iii) Solid circular section All the three beam sections have same cross-sectional area.	$\begin{gathered} 16 / \\ 20 \end{gathered}$	CO7	2014
	2	Draw the shear stress diagram for a rectangular beam section and show that maximum shear stress is 1.5 times average shear stress.		$\mathrm{CO7}$	2014
	3	Derive the equation of theory of simple bending with usual notations.		$\mathrm{CO7}$	2016
	4	Derive an expression for Euler's crippling load for a column with both ends fixed.		CO8	201
	5	Compare the crippling loads given by Euler's and Rankine's formula for a column of circular section 2.3 m long and of 30 mm diameter. The column is hinged at both ends. Take yield stress as $335 \mathrm{~N} / \mathrm{mm} 2$ and Rankine's constant $\mathrm{a}=(1 / 7500)$ and $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$. For what ratio of L / K, the Euler's formula cease to apply for this column?		C08	2016
5	1	Prove the torsional formula, with usual notations.	$\begin{gathered} 16 / \\ 20 \end{gathered}$	CO9	20
	2	A 150 mm diameter solid steel shaft is transmitting 450 kW power at 90 rpm. Compute the maximum shearing stress. Find the change that would occur in the shearing stress, if the speed were increased to 360 rpm .		CO 9	2014
	3	State the assumptions made in the theory of Pure Torsion.		CO10	2016
	4	Prove that a hollow shaft is stronger and stiffer than the solid shaft of same material, length and weight.		CO10	2018
	5	A hollow shaft of internal diameter 400 mm and external diameter 460 mm is required to transmit power at 180 rpm. Determine the power it can transmit, if the shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm} 2$ and the maximum torque exceeds the mean by 30%.		CO10	2016

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo dul e- \#	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Content Teachin g Hours	Blooms Learning Levels for Content	Final Bloo ms' Level	Identified Action Verbs for Learning	Instructi on Methods for Learning	Assessment Methods to Measure Learning
A	B	C	D	E	F	G	H
1	Introduction, Definition and concept and of stress and strain. Hooke's law, Stress-Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elongation of tapering bars of circular and rectangular cross sections, Elongation due to self weight.	5	$\begin{aligned} & -\mathrm{L} 1 \\ & -\mathrm{L} 2 \end{aligned}$	L2		Lecture	- Slip Test
	Saint Venant's principle, Compound bars, Temperature stresses, Compound section subjected to temperature stresses, state of simple shear, Elastic constants and their relationship.	5	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4		Lecture - Tutorial	Assignment
2	Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses.	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3		Lecture	Assignment
2	Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external pressure; Lame's equation, radial and hoop	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 2 \end{aligned}$	L2		Lecture	- Slip Test

COURSE PLAN - CAY 2019-20

| | stress distribution. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | Introduction to types of beams, supports and
 loadings. Definition of bending moment and
 shear force, Sign conventions, relationship
 between load intensity, bending moment and
 shear force. | 5 | -L 1 | L3 |

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{array}{\|c\|} \hline \mathrm{Mo} \\ \text { dul } \\ \mathrm{e}- \\ \# \end{array}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to ...
A	1	J	K	L	M	N
1		Stress and Strain	Stress and Strain			understand dimensional stresses and strains
1		Stress and Strain				apply simple stresses and strains on engineering

COURSE PLAN - CAY 2019-20

					materials
2	2D Stress System	2D Stress System			analyse r 2 D compound stress system and plotting principal stresses and planes by using mohr's circle
2	Cylinders				analyse the thin and thick cylinders subjected to internal and external pressures and draw stress distribution patterns
3	Shear Force and Bending moment	Shear Force and Bending moment			plot shear force and bending moment diagrams for statically determinate beams
3	Shear Force and Bending moment				understand the behaviour of statically determinate beams under external loads
4	Bending Stress	Bending Stress			plot combined shear and bending stresses distribution for circular, rectangular and T geometric sections
4	Torsion				analyse the circular shafts under torsion and its behaviour in combined bending and torsion criteria
5	Deflection of beams	Deflection of beams			Deflection and curvature of beam
5	Buckling of columns				analyse the behaviour columns and struts under buckling load and end conditions

